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ABSTRACT 

We analyze those features of non abelian color gauge theories 

which lead to confinement. A consistent picture of hadrons as bound 

states of quarks and gluons emerges when the vacuum is gauge 

invariant. The introduction of a transverse lattice approximation 

leads to a description of the theory in terms of basic hadronic degrees 

of freedom and a tractable method for calculation of properties of 

hadrons. 
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Quarks have formed the basis of much of our understanding of 

strong interaction phenomenology. Whether quarks may also form 

the basis of a dynamical theory of hadrons has become one of the 

most important questions in elementary particle physics. 

The most attractive theory for the dynamics of quarks is a gauge 

field theory with a non abelian color gauge group. This theory has 

been used to study the short distance behaviour of current operators 

where the predicted asymptotic freedom 
1 

provides an understanding 

of the approximate scaling observed in deep inelastic electron scatter- 

+ - 
ing and e e annihilation. In this paper we will show that this theory 

also provides the basis for a complete dynamical theory of hadrons. 

The color gauge theory is compactly described by the action 

A= /dt/dx {q(im-mlq-$~~[, 

where the quark fields, q, carry both color and flavor indices, D 
P 

is the gauge covariant derivative, and G 
IJ.” 

is the Yang-Mills field 

strength tensor. The quark mass matrix, m, is singlet in color but 

depends on the quark flavor. 

This theory has been studied order by order in perturbation 

theory, and has been shown to give a consistent theory of quarks and 

gluons, but not hadrons. 
2 

Wilson and others3 have suggested that 
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quarks and gluons are the physical particles in one possible phase of 

the theory, and that hadrons are the physical particles in another 

phase which cannot be reached from perturbation theory. 

Much confusion exists in the literature concerning the nature and 

existence of such a phase transition. This confusion can be traced to 

the fact that the action is invariant under local gauge transformations 

and that the gauge field Aa describes two physical degrees of freedom, 

not four. We may study the theory either by choosing a gauge which 

eliminates the redundant degrees of freedom, or by considering only 

gauge invariant quantities. To study the continuum theory we choose 

the axial gauge A’ 
z 

= 0, and eliminate z. for each of the color gauge 

fields thereby eliminating the two redundant degrees of freedom. The 

Hamiltonian for the system, neglecting quarks, becomes 

H = dzdxI 
r 1 

+ + (8aA )2 
Ly 

- r dzdz’dxI $ g2 7 (z. x1) /z - z’ 1 r (a’, x1’ , (2) 

where a,@ = ?i, F. G is the 
a 

cannonical momentum for the transverse 

gluons, and J (“,x1) is the local color charge density. The theory 

remains invariant under gauge transformations which are local in 

x and y but are global with respect to z and t. The conserved charge 

which generates these transformations is 
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i&X,) =/dz ?(t,a,xl) , (3) 

where the charge density is given by 

ri(t,z,xl)=i acuGu+X x 5 
cy a (4) 

Here the term linear in gluon fields is a reflection that the theory 

is described by a nonlinear realization of the transverse gauge symmetry 

in terms of the gluon fields. The ordinary (perturbative) state of this 

theory with physical gluons results from a spontaneous breakdown of 

transverse gauge invariance in direct analogy to the Higgs mechanism. 

We now consider the possibility that another phase exists for 

which the symmetry is not spontaneously broken. Since there is a 

symmetry associated with each point (x,y), it is useful to introduce a 

transverse lattice by keeping t and z as continuous variables but 

treating the x and y coordinates as a square lattice with lattice 

spacing a. The transverse lattice serves two purposes as it provides 

a gauge invariant ultraviolet cutoff for the theory, and, at the same 

time, allows us a method of studying the gauge symmetry at each 

discrete point in transverse space. 

The lattice variables are defined in a manner analogous to those 

used by Kogut and Susskind 4 
in their formulation of lattice gauge 

theories. The gauge fields are defined as 
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x n ~ (t, z) = Xr (t, 2, :a) a p=C,i 
-8 

A’ 
n, ~1 

(t,z) = X (t,z,na) Ly=Z,$ , 
(Y 

(5) 

where A 
p. IL 

is identified with the site with lattice vector 2, and 

and 2 
“3 ff 

with a link between p and IJ +G . The quark fields are 

identified with lattice sites. 

There are technical difficulties associated with the description 

of fermions in lattice theories. The approximation of the linear derivative 

in the Dirac equation by finite differences leads to an increase in the number 

of fermions in the naive continuum limit. 
5 

We partially overcome this 

problem by splitting the four components of the fermion spinor placing 

the spin up quarks on even and spin down quarks on odd lattice sites. 

The remaining spurious degree of freedom could be removed by adding 

a second derivative term which vanishes in the naive continuum limit, or 

by further splitting the fermion components. This has not been done 

here. The spin projected fermion fields are given by 

I+0 
xn(t.z) = JZa 2 

2 * (t,z,pa), 5 even 

l-0 
x,(t,z) =fiaip +- + (t,z,na), n odd (6) 
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The gauge theory action of Eq. (1) when written in terms of lattice 

fields becomes 

A=/dtdz z 1-i ztpv 

nlrv 

+/dtd, x tr [ DpMz 

n” 

D M+ 
P “a 1 

+rdtdz .& 3 tr[MnaMn+G,pMi+fl,eM$] - -. 

+/dtdz i -j&b ypDp- ml s 
n - 

-/dtdz x $ [yGSnrr i y5Mn&+; +n,+;; siai Y5 M& 51 I 
(7) 

n 
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where G’ 
)I” 

is the longitudinal field strength tensor, 
52 

is written 

as a two component spinor, and y 
(1. 

and y 
5 

are the two dimensional 

y matrices. The field, M 
ncr ’ 

is related to the transverse gauge fields 

by 

Mn = $ exp (iag?. xne) . 

The fermion spin factors are given by Sn j; = i S n,; = (4. 

The covariant derivatives are defined by 

+ig?*x M g -i-M 
~“a a “)1 ga a zff 

5.X 
n+Z, p _ 

(8) 

This completes the definition of the lattice gauge theory. The 

naive continuum limit is recovered by taking the limit a-0, making 

the identifications: g-g, H-g’, G-g, and using the field identifi- 

cations, Eqs. (5,6, 8). 

We would now like to discuss some of the properties of the lattice 

action Eq. (7). The action is invariant under the complete set of local 

color gauge transformations. It also preserves the global flavor sym- 

metries of vector and axial vector charges with only the quark mass 

term breaking these symmetries. The transformation properties are 

vxnv -1 iF 
=e 

xQ 
for vector charges and A xnAei = ei(-1)nFY5 

5 
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for axial charges where F is the matrix representation of the trans- 

formation which only acts on the flavor indices of the quarks. The 

lattice theory clearly breaks many of the space time symmetries; 

however, Lorentz transformations and continuous translations in the 

longitudinal direction are clearly preserved. We believe these features 

to be advantages of the transverse lattice. 

To study some of the implications of the transverse lattice theory, 

we again wish to focus our attention on the physical degrees of freedom 

by eliminating redundant degrees of freedom. For this purpose the 

light cone gauge zn-= 0, where xn* = (Xnt*Xnz)/fi, is a convenient 
- -- 

choice. We may then eliminate the field x,+ using the equations of 

motion. In terms of the physical degrees of freedom, the lattice action 

of Eq. (7) becomes 

A = / dx+dx- x tr ( 8~MnQa~M~0 ) 

na - - 

+ 
/ 

dx+dx 
11 

(i Y-m) 

” 
5.2 

- J d*+dx- 1 g 1 ssna iy5nlln,xn+r; +T$+; Sza i -fp~&, 1 - - 

‘/ dx+dx _ i + trWncrMn+; pMi+p aMnfp) 

- I 

n4 a 
- ma _a I 

+/ _ dx dx+dx; (IO) 
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where x*Z (t+z)/fi and the charge density yn- (x 
_’ x+) is given 

by 

Tn- = ?(MnQiy MzU+Mz-G aiTM 
- g-li,.cu 1 - n ", -' 1 

As in the continuous case the action is invariant under a set of gauge 

transformations whose generators are the conserved charges 

G, =/dx+ Tn- (x-.x+) . (12) 

In the continuous case a linear term in the charge density signaled the 

spontaneous breakdown of transverse gauge invariance. Here there 

are two possibilities. If the operators Mno have a non zero vacuum 

expectation value as one would expect naively to recover the continuum 

limit, the transverse symmetry is spontaneously broken, and the theory 

would describe quarks and gluons as physical excitations. If Mnn has 

zero vacuum expectation value, the vacuum remains invariant under 

transverse gauge rotations. It is clearly the second possibility which 

must obtain if the theory is to describe hadrons. The mechanism which 

generates the second phase is analogous to that of the nonlinear o model 

in two dimensions studied recently by several authors. 
6 

It is shown that 

the nonlinear O(N) CT model .exists in two dimensions only as a linear 

realization of the symmetry, with a full degenerate multiplet of massive 
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scalars generated as bound states of the nonlinear degrees of freedeom. 

In the closely related nonlinear O(N) c model with gauge fields in two 

dimensions a similar result is found, ’ except for the existence of a nonlinear 

Biggs phase with a first order transition to the linear phase which again 

describes a full multiplet of massive excitations generated dynamically 

from the nonlinear degrees of freedom. The longitudinal dynamics of the 

transverse gluons are precisely of the latter form. 

With the above motivation we will assume that hadronic physics 

is described by the symmetric phase and a linear realization of the 

transverse gauge symmetry. Therefore we modify the action 

by allowing all of the degrees of freedom of the complex matrices 

M 
no 

to be dynamical. We must also add a local potential in the fields 

M to the action. 
na 

The role of this linearization is 

to correctly describe the important degrees of freedom when the 

lattice spacing is large. A further advantage is that we may study 

both phases of the system by adjusting the parameters of the local 

potential. These parameters and the parameters of the action are 

not really free parameters but must be determined by a renormali- 

zation group from the continuum limit. This subject will not be 

discussed here. 

The potential which must preserve the local gauge symmetries 

has the general form 
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V= /dx-/dx+x {P" trWnaMio) 
na 

+ Altr (Mna Mba Mncv ML ) - - I - 

tr (M,(, Mza) 1 
2 

+ A 2 - - 
+ A3 (detM +detM 

na (13) 

The linearized transverse lattice theory is a two dimensional 

continuum field theory in the longitudinal direction with quark fields 

associated with each site and meson fields associated with each link 

of the transverse lattice. If the vacuum is invariant under transverse 

gauge transformations, the linear “Coulomb” potential generated by 

integrating out the longitudinal gauge fields will confine the local color 

charges. States which are not locally color singlet are completely decoupled 

from the spectrum of physical states. We emphasize that the states must 

be singlet with respect to color rotations at each transverse site. 

The confinement of quarks is a direct result of this Coulomb 

potential. For quarks at a given site the binding in the longitudinal 

direction comes directly from the potential. Bound states of quarks 

separated in the transverse direction must include enough link mesons 

so that the state is color singlet at each site between the quarks. The 

energy will depend on the minimum number of link mesons needed to 
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form a color singlet state, and will grow with the distance between the 

quarks. The actual energy of the state will depend on the mass of the 

links, and the energy associated with the binding of neighboring links 

in the chain. 

While the theory clearly confines quarks, we must see if it really 

makes hadrons. The Hamiltonian for the theory may be constructed by 

standard methods. Since we have chosen a light cone gauge we use 

light cone quantization for the quarks and link meson fields. The 

Hamiltonian for the system becomes 

H = /dx+ z pe2 tr (M,,M,+@) 
ncr - - 

f J I &+ x: 
-J dx+ 4 + ’ 

‘N ‘1 zia ‘1 

-Jdx+i r tr 

- Jdx+;d$ (14) 

Not all of the terms in the potential have been indicated. xi is a 

single component dirac field given by the projection x1 = 2 -5’4(1 - v,)x * 

T’ 2 = CNI, and J is a matrix in color and lattice indices given by 

J&n* = -- 11 

;I: 

‘$,n+ii ‘niz MnO+ ‘rI+g,nSn’uM,+,u 1 ’ +. - I I _I _ 
cz 

(15) 
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The correction to the quark mass term comes from normal ordering 

the Coulomb interaction. The link meson mass “2 p is the renormalized 

mass. The fields have the plane wave expansions and commutation re- 

lations 

Akfk (x+) + Bkfk (x+) > 

PkJ$l = Pk,B+kJ = 2k 6( k-k’) co X,(X+) = J { ,sk ak f k(x+) + bi f’: (x+) 
1 

{ak. a+k, > = {bk,b;,} = 2k 6 (k-k’) 

f(X+) = & e 
-i’kx + 

, (16) 

where we have suppressed the site and color labels. 

In order to systematically study the Hamiltonian of Eq. (14) we 

must separate the part of the Coulomb interaction which acts as the 

potential between particles. This potential acts independently at each 

transverse site and is confining, and thus inherently non-perturbative. 

This part can be diagonalized if one keeps in Ho only the longitudinal 

kinetic terms and the Coulomb interactions which do not produce pairs. 

The remaining interactions may be treated perturbatively. The states 

of H 
0 

are a spectrumof transverselystatic bound states associated 

with each configuration of quarks and link mesons. The perturbation 
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theory which results is one of “bare” hadrons and their interactions. 

At any level of sophistication in describing the localized states one 

may compute the couplings between these states and those of neighbor- 

ing configurations reducing the problem to one of finding the normal 

modes on the transverse lattice. This generates a continuous spectrum 

of excitations with definite transverse momentum and masses of the 

form 2P+P- = M2+Pt/c2 for PI small compared to the inverse 

lattice spacing. We expect this procedure to be highly tractable since 

we expect the physical hadrons to be composed of bare hadrons of 

approximately the same mass for suitable choice of lattice spacing. 

The full implementation of the program discussed above will be treated 

in a subsequent publication. 

The simplest bare hadron is a quark-antiquark bound state at a 

single site. There is a discrete spectrum of such states, and they 

are precisely the states of the two dimensional ‘t Hooft model. 
8 

The 

wave functions may be written as 1 p, > =,( ‘dx ,$ fx) [2x(l -x)1-* ‘2azpbTi -x)p 10, 

where ‘~1 /P-> = 2~~ 6 (P- - P;), and 6’ dx IQ (x) / 2 = 1. o (x) satisfies the 

wave equation 

2p+p-o (x) = m 

2 

- 2 CN $Y,(Y) I 
bYI ) 

(18) 

where the renormalized quark mass is given by m 
:: 2 

= m2- g* CN/Ta2. 

The principal value integral is to be taken. 
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. 

‘tHooft has shown that these states have approximately linear spacing 

in the mass squared, Zp+p-. The ground state meson is pseudoscalar, 

and its mass goes to zero as the bare quark mass goes to zero as one 

would expect for a Goldstone realization of chiral symmetry. As we 

have noted the transverse lattice theory preserves chiral symmetry. 

Hence in the phase where the vacuum is invariant under the local gauge 

symmetry the vacuum is not invariant under the global chiral symmetry 

and vice versa. 

Another bare hadronic bound state consists of a link meson and 

its antiparticle. The wave function for this state is given by 

[p> =l’dx.p(x) [2x(l-~)]-~‘~A:pB;I_x)~(O> 

<p’Ip’ = Zpb(p-p’), l’dx l@(x)/’ = 1 , (19) 

and Q (x) satisfies the wave equation 

zp+p- @p(x) = p”2 (; f $--)0(x) 

-gc 

f 

1 

N 
ira o ,X:,2 OCy) 

(x+y)(2-x-y) 
112 . (20) 

4]Y (I-y)x(l-xl I 

We interpret these states as daughters of the bare pomeron trajectory. 

We note that the WKB solutions for the meson and pomeron bound states 

yield a spacing for the pomeron just twice that of the meson, i. e. half 

the slope. 
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An amusing feature of the local bound states emerges when we use 

a 1/N expansion to restrict the Coulomb interactions to planar topology. 

A bound state of n link mesons at a given site is directly analogous to 

the longitudinal Virasoro string 
9 

in the limit that the link meson mass 

vanishes. Similarly a bound state of n link mesons and a quark- 

antiquark pair is the analog of the n break longitudinal string with 

quarks at the ends. ” We note that when we include the interaction terms, 

the quarks can emit and absorb link mesons even when we restrict our- 

selves to one site for the link. Hence strings with different numbers of 

breaks are coupled together. 

Other configurations for the bare hadrons may be studied in a 

similar fashion. The bound state equations follow directly from the 

application of Ho to the appropriate states. We defer discussion of 

these states to a future paper where we will discuss the formation of 

physical hadrons. 

It is important to note that the bare hadrons cannot be directly 

identified with the physical hadrons as they do not propagate in the 

transverse direction. The physical hadrons must necessarily involve 

those linear combinations of bare hadrons which have normal pro- 

pagation in the transverse lattice. 

In this paper, we have focused on the important physical concepts 

which result from acareful study of local color gauge theories. We have 

clarified the nature of the phase transition which leads to a gauge 
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invariant ground state. The confinement of quarks and gluons occurs in 

the symmetric phase and is not a result of an infinite coupling strength, 

bag, or soliton solution to the field theory. The theory is studied 

through the introduction of a transverse lattice and linear realizations 

for the gluon fields. The nonperturbative effects which lead to the 

formation of the hadronic bound states are easily isolated. We believe 

that the transverse lat,tice theory represents a tractable method for a 

systematic study of those features of hadronic physics which do not 

involve large transverse momentum. 

ACKNOWLEDMENT 

We would like to thank the members of the Fermilab theory group 

for constructive criticism and encouragement. We would especially 

like to thank R. Savit, E. Rabinovici. B. W. Lee, and M. Einhorn for 

many useful discussions. 



-17- FERMILAB-Pub-761 24-THY 

REFERENCES 

1 
G. ‘t Hooft, Marseilles Conference on Gauge Theories, 1972 (unpublished); 

H. D. Politzer, Phys. Rev. Lett. , 2, 1345 (1973); D. J. Gross, 

F. Wilczek, Phys. Rev. Lett., 2, 1343 (1973). 

2 
T. Appelquist, J. Carazzone, H. Kluberg-Stern,’ M. Roth, Fermilab- 

Pub-76/16-THY, to be published. 

3 
K. Wilson, Phys. Rev. , D10, 2445 (1974); R. Balian, J. Drouffe, - 

C. Itzykson, Phys. Rev., D10, 3376 (1974). - 

4 
J. Kogut, L. Susskind, Phys. Rev., G, 399 (1975). 

5 K. Wilson, Erice lectures (1975). unpublished. 

6 The symmetry properties of the o model have been discussed by A. Polyakov, 

Phys. Lett. , 59B, 79 (1975); A. Migdal, Landau Institute of Theoretical - 

Physics preprint, 1975; E. Brezin, J. Zinn-Justin, to be published. The 

precise nature of the phase transition in the large N limit is given by W. 

Bardeen, B. Lee, R. Shrock, Fermilab-preprint 76/33-THY. 

7These results were obtained by one of the authors (W. A. B. ) and M. Bander, 

to be published. 

8 
G. ‘t Hooft, Nucl. Phys., B75, 461 (1974). - 

9 M. A. Virasoro, Phys. Rev., 177, 2309 (1969); C. Rebbi, Phys. Lett., - 

x, i (1974). 



-18- FERMILAB-Pub-761 24-THY 

10 A. Patrasciou, Nucl. Phys. B81, 525 (1974), W. A. Bardeen, I. Bars, - 

A. J. Hansen, R. D. Peccei, Phys. Rev. D13, 2364 (1976). 


